Monday, May 13, 2013

Quantum Mechanics: Potential Energy Diagrams

A particle of energy 12 x 10-7 J moves in a region of space in which the potential energy is 10 x 10-7 J between the points -5 cm and 0 cm, zero between the points 0 cm and +5 cm, and 20 x 10-7 J everywhere else.



Question 1: Range of Motion
What will be the range of motion of the particle when subject to this potential energy function?


The particle is between +-5 cm.


Question 2: Turning Points
Clearly state why the particle can not travel more than 5 cm from the origin.

The energy that the particle has is less than the energy at the top of the well.

Question 3: Probability of Detection
Assume we measure the position of the particle at several random times. Is there a higher probability of detecting the particle between -5 cm and 0 cm or between 0 cm and +5 cm?

The particle is most likely to be found between -5cm and 0cm because the particle has less kinetic energy at U_1 it moves slower, thus spending more time there.

Question 4: Range of Motion
What will happen to the range of motion of the particle if its energy is doubled?


The range of motion increases

Question 5: Kinetic Energy
Clearly describe the shape of the graph of the particle's kinetic energy vs. position.

The shape is an concave down parabola.

Question 6: Most Likely Location(s)
Assume we measure the position of the particle at several random times. Where will the particle most likely be detected?

The edges.

No comments:

Post a Comment